POJ PKU 1474 Video Surveillance 解题报告
题目链接:http://poj.org/problem?id=1474
写这题的目的是看完了zzy的论文,写了半平面交,验证一下正确性,结果发现我写的问题还是很多的。
题目大意是问能不能放一个摄像机,使得摄像机能看到整个多边形内部。
这题和1279和3130差不多,过了这题再去对付那两题就简单多了。
代码如下:
/**
* 二维ACM计算几何模板
* 注意变量类型更改和EPS
* #include <cmath>
* #include <cstdio>
* By OWenT
*/
#include <cmath>
#include <cstdio>
#include <algorithm>
const double eps = 1e-8;
const double pi = std::acos(-1.0);
//点
class point
{
public:
double x, y;
point(){};
point(double x, double y):x(x),y(y){};
static int xmult(const point &ps, const point &pe, const point &po)
{
return (ps.x - po.x) * (pe.y - po.y) - (pe.x - po.x) * (ps.y - po.y);
}
};
//两点表示的向量
class pVector
{
public:
point s, e;//两点表示,起点[s],终点[e]
pVector(){}
pVector(const point &s, const point &e):s(s),e(e){}
//向量与向量的叉乘,参数:向量[_Off]
double operator *(const pVector &_Off) const
{
return (e.x - s.x) * (_Off.e.y - _Off.s.y) - (e.y - s.y) * (_Off.e.x - _Off.s.x);
}
//直线平行,参数:直线向量[_Off]
bool parallel(const pVector &_Off) const
{
return std::fabs((*this) * _Off) < eps;
}
//两直线交点,参数:目标直线[_Off]
point crossLPt(pVector _Off)
{
//注意先判断平行和重合
point ret = s;
double t = ((s.x - _Off.s.x) * (_Off.s.y - _Off.e.y) - (s.y - _Off.s.y) * (_Off.s.x - _Off.e.x))
/ ((s.x - e.x) * (_Off.s.y - _Off.e.y) - (s.y - e.y) * (_Off.s.x - _Off.e.x));
ret.x += (e.x - s.x) * t;
ret.y += (e.y - s.y) * t;
return ret;
}
};
class polygon
{
public:
const static long maxpn = 2000;
point pt[maxpn];//点(顺时针或逆时针)
long n;//点的个数
//-----------半平面交-------------
//复杂度:O(nlog2(n))
//#include <algorithm>
//半平面计算极角函数[如果考虑效率可以用成员变量记录]
static double hpc_pa(const pVector &_Off)
{
return atan2(_Off.e.y - _Off.s.y, _Off.e.x - _Off.s.x);
}
//半平面交排序函数[优先顺序: 1.极角 2.前面的直线在后面的左边]
static bool hpc_cmp(const pVector &l, const pVector &r)
{
double lp = hpc_pa(l), rp = hpc_pa(r);
if(fabs(lp - rp) > eps)
return lp < rp;
return point::xmult(l.s, r.e, r.s) < 0.0;
}
//用于计算的双端队列
pVector dequeue[maxpn];
//获取半平面交的多边形
//参数:向量集合[l],向量数量[ln];(半平面方向在向量左边)
polygon& halfPanelCross(pVector _Off[], int ln)
{
int i, tn;
n = 0;
std::sort(_Off, _Off + ln, hpc_cmp);
//平面在向量左边的筛选
for(i = tn = 1; i < ln; i ++)
if(fabs(hpc_pa(_Off[i]) - hpc_pa(_Off[i - 1])) > eps)
_Off[tn ++] = _Off[i];
ln = tn;
int bot = 0, top = 1;
dequeue[0] = _Off[0];
dequeue[1] = _Off[1];
for(i = 2; i < ln; i ++)
{
if(dequeue[top].parallel(dequeue[top - 1]) ||
dequeue[bot].parallel(dequeue[bot + 1]))
return (*this);
while(bot < top &&
point::xmult(dequeue[top].crossLPt(dequeue[top - 1]), _Off[i].e, _Off[i].s) > eps)
top --;
while(bot < top &&
point::xmult(dequeue[bot].crossLPt(dequeue[bot + 1]), _Off[i].e, _Off[i].s) > eps)
bot ++;
dequeue[++ top] = _Off[i];
}
while(bot < top &&
point::xmult(dequeue[top].crossLPt(dequeue[top - 1]), dequeue[bot].e, dequeue[bot].s) > eps)
top --;
while(bot < top &&
point::xmult(dequeue[bot].crossLPt(dequeue[bot + 1]), dequeue[top].e, dequeue[top].s) > eps)
bot ++;
//计算交点(注意不同直线形成的交点可能重合)
if(top <= bot + 1)
return (*this);
for(i = bot; i < top; i ++)
pt[n ++] = dequeue[i].crossLPt(dequeue[i + 1]);
if(bot < top + 1)
pt[n ++] = dequeue[bot].crossLPt(dequeue[top]);
return (*this);
}
};
pVector line[polygon::maxpn];
point pt[polygon::maxpn];
polygon ans;
int main()
{
int n, i;
int t = 1;
//freopen("d:\\in.txt", "r", stdin);
//freopen("d:\\myout.txt", "w", stdout);
while(::scanf("%d", &n), n)
{
for(i = 0; i < n; i ++)
::scanf("%lf %lf", &pt[i].x, &pt[i].y);
for(i = 0; i < n; i ++)
line[i] = pVector(pt[(i + 1) % n], pt[i]);
if(t > 1)
puts("");
::printf("Floor #%d\n", t ++);
ans.halfPanelCross(line, n);
if(ans.n > 0)
::printf("Surveillance is possible.\n");
else
::printf("Surveillance is impossible.\n");
}
return 0;
}
Last updated