ECUST 09年 校赛个人赛第三场部分解题报告(A,D,F,I)
校赛个人赛第三场部分解题报告(A,D,F,I)
这次我完成了四道题分别是A,D,F,I
一大半时间我都花在了A上,我犯了很究级的错误
首先是VC6.0的algorithm里没有min函数,而我用min做变量名导致CE4次,找了半天才找出来
其次是我的最短路算法中错误和初始化错误交替出现导致的6次WA
A. The K-th City
A题的大意是给出几个城市之间的距离,要求算出第k远的城市因为数据量较小,可以用floyd或dijkstra算法
floyd版:
#include<iostream>
#include<algorithm>
using namespace std;
struct Pos
{
long pos;
long dis;
};
bool cmpFun(Pos a,Pos b)
{
if(a.dis == b.dis)
return a.pos < b.pos;
else
return a.dis < b.dis;
}
Pos pos[201];
long mini[201][201];
int main()
{
long n,m;
while(cin>>n,n)
{
cin>>m;
int i,j,k;
for(i = 0 ; i < n ; i ++)
{
mini[i][i] = 0;
for(j = i + 1 ; j < n ; j ++)
mini[i][j] = mini[j][i] = 100000000;
}
while(m --)
{
scanf("%d %d %d",&i,&j,&k);
if(mini[i][j] > k)
mini[i][j] = mini[j][i] = k;
}
for (k=0;k<n;k++)
for (i=0;i<n;i++)
for (j=0;j<n;j++)
if (mini[i][k]+mini[k][j]<mini[i][j])
mini[i][j] = mini[j][i] =mini[i][k]+mini[k][j];
for(i = 1 ; i < n ; i ++)
{
pos[i - 1].pos = i;
pos[i - 1].dis = mini[0][i];
}
sort(pos,pos + n - 1 ,cmpFun);
cin>>i;
cout<<pos[i - 1].pos<<" "<<pos[i - 1].dis<<endl;
}
return 0;
}
dijkstra版:
#include<iostream>
#include<algorithm>
using namespace std;
#define MAXN 201
#define inf 1000000000
typedef long elem_t;
void dijkstra(int n,elem_t mat[][MAXN],int s,elem_t* minNum,int* pre){
int v[MAXN],i,j,k;
for (i=0;i<n;i++)
minNum[i]=inf,v[i]=0,pre[i]=-1;
for (minNum[s]=0,j=0;j<n;j++){
for (k=-1,i=0;i<n;i++)
if (!v[i]&&(k==-1||minNum[i]<minNum[k]))
k=i;
for (v[k]=1,i=0;i<n;i++)
if (!v[i]&&minNum[k]+mat[k][i]<minNum[i])
minNum[i]=minNum[k]+mat[pre[i]=k][i];
}
}
struct Pos
{
long pos;
long dis;
};
bool cmpFun(Pos a,Pos b)
{
if(a.dis == b.dis)
return a.pos < b.pos;
else
return a.dis < b.dis;
}
Pos pos[MAXN];
long matNum[MAXN][MAXN];
long mini[MAXN];
int preNode[MAXN];
int main()
{
long n,m;
while(cin>>n,n)
{
cin>>m;
int i,j,k;
for(i = 0 ; i < n ; i ++)
for(j = 0 ; j < n ; j ++)
matNum[i][j] = inf;
while(m --)
{
scanf("%d %d %d",&i,&j,&k);
matNum[i][j] = matNum[j][i] = k;
}
dijkstra(n,matNum,0,mini,preNode);
for(i = 1 ; i < n ; i ++)
{
pos[i - 1].pos = i;
pos[i - 1].dis = mini[i];
}
sort(pos,pos + n - 1 ,cmpFun);
cin>>i;
cout<<pos[i - 1].pos<<endl;
}
return 0;
}
D. City Mapping
D题是按输入的方向走,输出走过的路径和路径的模式(横向街道,纵向街道,十字路口)
这题只要纯模拟就能过
代码:
#include<iostream>
#include<cstring>
using namespace std;
int strees[201][201][2];
int main()
{
long m,n,i,j,k;
long posX,posY;
long t = 1,tmpInt;
char cmd[10];
while(cin>>m>>n>>i,m || n || i)
{
memset(strees,0,sizeof(strees));
posX = posY = 0;
printf("Scenario #%ld:\n" , t ++);
while(i --)
{
scanf("%s %d",cmd,&tmpInt);
if(!strcmp(cmd,"South"))
{
for( j = posY ; j <= posY + tmpInt ; j ++)
strees[posX][j][1] = 1;
posY = j - 1;
}
else if(!strcmp(cmd,"North"))
{
for( j = posY ; j >= posY - tmpInt ; j --)
strees[posX][j][1] = 1;
posY = j + 1;
}
else if(!strcmp(cmd,"West"))
{
for( j = posX ; j >= posX - tmpInt ; j --)
strees[j][posY][0] = 1;
posX = j + 1;
}
else if(!strcmp(cmd,"East"))
{
for( j = posX ; j <= posX + tmpInt ; j ++)
strees[j][posY][0] = 1;
posX = j - 1;
}
}
for(j = 0 ; j < m ; j ++)
{
for(k = 0 ; k < n ; k ++)
if(strees[k][j][0] && strees[k][j][1])
printf("+");
else if(strees[k][j][0])
printf("-");
else if(strees[k][j][1])
printf("|");
else
printf(".");
printf("\n");
}
}
return 0;
}
F. Tetris
F是简单的俄罗斯方块:
要求按顺序输入方块的其始位置和终点位置,算出最高点
这题可以列一个转移方程,
令第i个方块的最高点为a[i]
=> a[i] = max{a[k] + h[i]}其中h[i]为第i个方块的高度,k= s[k]
或 s[i] <= s[k] && e[i] >= e[k]
代码如下:
#include<iostream>
using namespace std;
long s[1001],e[1001],h[1001];
long posH[1001];
int main()
{
long n,w;
while(cin>>n>>w , n || w)
{
int i,j;
for(i = 0 ; i < n ; i ++)
scanf("%ld %ld %ld",&s[i],&e[i],&h[i]);
memset(posH,0,sizeof(posH));
long maxInt = 0,tmpInt;
for(i = 0 ; i < n ; i ++)
{
tmpInt = h[i];
for(j = 0 ; j < i ; j ++)
{
if((s[i] <= e[j] && e[i] >= s[j]
|| s[i] <= s[j] && e[i] >= e[j])
&& tmpInt < posH[j] + h[i])
tmpInt = posH[j] + h[i];
}
posH[i] = tmpInt;
}
for(i = 0 ; i < n ; i ++)
if(maxInt < posH[i])
maxInt = posH[i];
cout<<maxInt<<endl;
}
return 0;
}
I. Girl Friend
I题比较有意思,是帮一个倒霉孩子找女朋友,要求概率*好感度(暂且这么翻译吧)
这是DP问题,令每个女孩的好感度为s[i],成为女朋友的概率为pl[i],第一个见面的美女的最大好感度为a[i]
=>a[i] = max{a[i + 1] (1 – pl[i]) + s[i] pl[i] , a[i + 1]}复杂度O(n)
具体代码如下:
#include<iostream>
using namespace std;
double a[100001],pl[100001];
double s[100001];
int main()
{
int n;
while(cin>>n,n)
{
long i;
for(i = 0 ; i < n ; i ++)
{
scanf("%lf %lf",&pl[i],&s[i]);
pl[i] /= 100;
}
a[n - 1] = s[n - 1] * pl[n - 1];
for(i = n - 2 ; i >=0 ; i --)
if(a[i + 1] * (1.0 - pl[i]) + pl[i] * s[i] > a[i + 1])
a[i] = a[i + 1] * (1 - pl[i]) + pl[i] * s[i];
else
a[i] = a[i + 1];
double output = 0;
for(i = 0 ; i < n ; i ++)
if(output < a[i])
output = a[i];
printf("%.2lf\n",output);
}
return 0;
}
Last updated